Protein Kinase A-Mediated Septin7 Phosphorylation Disrupts Septin Filaments and Ciliogenesis

Abstract
Septins are GTP-binding proteins that form heteromeric filaments for proper cell growth and migration. Among the septins, septin7 (SEPT7) is an important component of all septin filaments. Here we show that protein kinase A (PKA) phosphorylates SEPT7 at Thr197, thus disrupting septin filament dynamics and ciliogenesis. The Thr197 residue of SEPT7, a PKA phosphorylating site, was conserved among different species. Treatment with cAMP or overexpression of PKA catalytic subunit (PKACA2) induced SEPT7 phosphorylation, followed by disruption of septin filament formation. Constitutive phosphorylation of SEPT7 at Thr197 reduced SEPT7‒SEPT7 interaction, but did not affect SEPT7‒SEPT6‒SEPT2 or SEPT4 interaction. Moreover, we noted that SEPT7 interacted with PKACA2 via its GTP-binding domain. Furthermore, PKA-mediated SEPT7 phosphorylation disrupted primary cilia formation. Thus, our data uncover the novel biological function of SEPT7 phosphorylation in septin filament polymerization and primary cilia formation.
Funding Information
  • Ministry of Science and Technology, Taiwan (MOST 106-2314-B-006-056-MY3, 108-2811-B-006-509, 108-2811-B-006-5188 to Pao-Lin Kuo; MOST103-2628-B-006-001-MY3 and MOST106-2320-B-006-056- MY3 to Chia-Yih Wang)