Abstract
Livestock waste-based products, such as composted manure, are often used in crop production systems. The products' microbial characteristics differ depending on animal waste treatment methods used (e.g., biogas production/composting). The question remains whether different livestock waste-based products differently impact soil microbiota. A pot experiment with five treatments (control, chemical fertilizer, digestate + chemical fertilizer, wheat straw compost + chemical fertilizer, and woodchip compost + chemical fertilizer) was conducted to compare the survival rates of microbial communities from digestate and composted manure, after their application to agricultural soil. Potatoes were planted in each pot. The changes in soil pH, the concentration of ammonium and nitrate, and the microbial community properties were monitored after 1, 6, 10, and 14 weeks of the application of livestock waste-based products. The application of composted manure, especially woodchip compost, showed a relatively more extensive impact on the soil microbial community structure than the other treatments. Woodchip compost contained a relatively more abundant and diverse bacterial community than digestate, and its family-level bacterial community structure was similar to that of the soil. These characteristics might determine the extent of the impact of livestock waste-based products on soil microbial communities. Digestate markedly influenced the inorganic nitrogen concentrations in soils but did not affect the soil microbial community. In conclusion, the survival rate of microbes of livestock waste-based products varies depending on the product type. Further investigation is needed to fully understand their impact on soils' microbial functions.
Funding Information
  • Ministry of Education, Culture, Sports, Science and Technology (JPJ000959)

This publication has 59 references indexed in Scilit: