Mass spectrometry imaging identifies abnormally elevated brain l -DOPA levels and extrastriatal monoaminergic dysregulation in l -DOPA–induced dyskinesia

Abstract
L-DOPA treatment for Parkinson’s disease frequently leads to dyskinesias, the pathophysiology of which is poorly understood. We used MALDI-MSI to map the distribution of l-DOPA and monoaminergic pathways in brains of dyskinetic and nondyskinetic primates. We report elevated levels of l-DOPA, and its metabolite 3-O-methyldopa, in all measured brain regions of dyskinetic animals and increases in dopamine and metabolites in all regions analyzed except the striatum. In dyskinesia, dopamine levels correlated well with l-DOPA levels in extrastriatal regions, such as hippocampus, amygdala, bed nucleus of the stria terminalis, and cortical areas, but not in the striatum. Our results demonstrate that l-DOPA–induced dyskinesia is linked to a dysregulation of l-DOPA metabolism throughout the brain. The inability of extrastriatal brain areas to regulate the formation of dopamine during l-DOPA treatment introduces the potential of dopamine or even l-DOPA itself to modulate neuronal signaling widely across the brain, resulting in unwanted side effects.
Funding Information
  • FP7 People: Marie-Curie Actions (607517)
  • Agence Nationale de la Recherche (ANR-07-MNP TRAFINLID)
  • Agence Nationale de la Recherche (ANR-08-MNP-018 MCHPRIMAPARK)
  • Swedish Foundation for Strategic Research (RIF14-0078)
  • Hjärnfonden (FO2018-0292)
  • Vetenskapsrådet (2018–03320)
  • Vetenskapsrådet (2018–05501)
  • Uppsala Universitet
  • Science for Life Laboratory
  • Fédération pour la Recherche sur le Cerveau
  • Biothèque Primate — CNRS Life Sciences Department