Robustness Analysis for Multi-Agent Consensus Systems with Application to DC Motor Synchronization

Abstract
DC motor speed synchronization is a critical problem in industrial and robotic applications. To tackle this problem, we propose to use a multi-agent consensus-based control scheme that guarantees the convergence of the DC motor speeds to either fixed or time-varying reference. A detailed robustness analysis considering parametric uncertainty and time delay in the multi-agent system is performed to guarantee the consensus on the speed of DC motors in actual practice. The results obtained concerning the robustness analysis allowed us to implement experimental tests on a three-motor system using a wireless communication system to achieve satisfactory performance.