Enhanced Antimalarial Efficacy Obtained by Targeted Delivery of Artemisinin in Heparin-Coated Magnetic Hollow Mesoporous Nanoparticles

Abstract
Malaria is one of the deadliest infectious diseases threatening half of the world population. With the deterioration of the parasiticidal effect of the current antimalarials, novel approaches such as screening of more specific inhibitors and targeted delivery of drugs have been under intensive research. Herein, we prepare hollow mesoporous ferrite nanoparticles (HMFNs) of 200 nm with ferromagnetic properties using a one-pot hydrothermal reaction. A magnetically targeted drug-delivery system coloaded with artemisinin in the inner magnetite shell and heparin on the outer mesoporous shell ([email protected]@HEP) is developed. Specific targeting of the magnetic nanoparticles to the parasite-infected erythrocytes is achieved by the attraction between the HMFNs and hemozoin (paramagnetic), a vital metabolite of plasmodium in the erythrocytic stage. With the hemozoin production reaching the maximum during the schizont period of the parasite, [email protected]@HEPs are adsorbed to the infected red blood cells (iRBCs), which not only interferes with the release of merozoites but also significantly enhances the inhibitory efficacy due to the increased local concentration of artemisinin. Subsequently, the heparin coated on the surface of the nanoparticles can efficiently interfere with the invasion of freshly released merozoites to new RBCs through the specific interaction between the parasite-derived ligands and heparin, which further increases the inhibitory effect on malaria. As a cluster of heparin, heparin-coated nanoparticles provide stronger blocking capability than free heparin, resulting from multivalent interactions with surface receptors on merozoite. Thus, we have developed a HMFN-based delivery system with considerable antimalarial efficacy, which is a promising platform for treatment against malaria.
Funding Information
  • Department of Science and Technology of Liaoning Province (2019-MS-270)
  • Chinese Academy of Medical Sciences (2019-I2M-5-042)
  • Department of Education of Liaoning Province (LSNZD201901)
  • Shenyang Agricultural University
  • National Natural Science Foundation of China (81772219, 82030060)
  • Liaoning Province (8804-880416076)