Hepatitis B Virus DNA Integration: In Vitro Models for Investigating Viral Pathogenesis and Persistence

Abstract
Hepatitis B virus (HBV) is a globally-distributed pathogen and is a major cause of liver disease. HBV (or closely-related animal hepadnaviruses) can integrate into the host genome, but (unlike retroviruses) this integrated form is replication-defective. The specific role(s) of the integrated HBV DNA has been a long-standing topic of debate. Novel in vitro models of HBV infection combined with sensitive molecular assays now enable researchers to investigate this under-characterised phenomenon with greater ease and precision. This review covers the contributions these systems have made to understanding how HBV DNA integration induces liver cancer and facilitates viral persistence. We summarise the current findings into a working model of chronic HBV infection and discuss the clinical implications of this hypothetical framework on the upcoming therapeutic strategies used to curb HBV-associated pathogenesis.
Funding Information
  • Deutsches Zentrum für Infektionsforschung (Project 5.704)

This publication has 152 references indexed in Scilit: