Covid-19-Associated Coagulopathy: Biomarkers of Thrombin Generation and Fibrinolysis Leading the Outcome

Abstract
Background: Coronavirus Disease 2019 (COVID-19)-associated coagulopathy is characterized by a prothrombotic state not yet comprehensively studied. We investigated the coagulation pattern of patients with COVID-19 acute respiratory distress syndrome (ARDS), comparing patients who survived to those who did not. Methods: In this prospective cohort study on 20 COVID-19 ARDS patients, the following biomarkers were measured: thrombin generation (prothrombin fragment 1 + 2 (PF 1 + 2)), fibrinolysis activation (tissue plasminogen activator (tPA)) and inhibition (plasminogen activator inhibitor 2 (PAI-2)), fibrin synthesis (fibrinopeptide A) and fibrinolysis magnitude (plasmin–antiplasmin complex (PAP) and D-dimers). Measurements were done upon intensive care unit (ICU) admission and after 10–14 days. Results: There was increased thrombin generation; modest or null release of t-PA; and increased levels of PAI-2, fibrinopeptide A, PAP and D-dimers. At baseline, nonsurvivors had a significantly (p = 0.014) higher PAI-2/PAP ratio than survivors (109, interquartile range (IQR) 18.1–216, vs. 8.7, IQR 2.9–12.6). At follow-up, thrombin generation was significantly (p = 0.025) reduced in survivors (PF 1 + 2 from 396 pg/mL, IQR 185–585 to 237 pg/mL, IQR 120–393), whereas it increased in nonsurvivors. Fibrinolysis inhibition at follow-up remained stable in survivors and increased in nonsurvivors, leading to a significant (p = 0.026) difference in PAI-2 levels (161 pg/mL, IQR 50–334, vs. 1088 pg/mL, IQR 177–1565). Conclusion: Severe patterns of COVID-19 ARDS are characterized by a thrombin burst and the consequent coagulation activation. Mechanisms of fibrinolysis regulation appear unbalanced toward fibrinolysis inhibition. This pattern ameliorates in survivors, whereas it worsens in nonsurvivors.

This publication has 37 references indexed in Scilit: