Decision Simulation of Construction Project Delivery System under the Sustainable Construction Project Management

Abstract
Choosing an appropriate project delivery system (PDS) directly affects the achievement of performance goals, and at the same time it is of great significance for sustainable construction project management (SCPM). This paper took the PDS of construction engineering as the research object, took the Design-Build (DB) and the Design-Bid-Build (DBB) as examples, and established the indicator system for determinants of the PDS decision. Based on Multi-Agent Systems (MAS), a decision-making simulation model of the PDS decision was constructed, and this paper analyzed the influence of the project attribute characteristics, policy and market environment, owner ability and preference, and contractor technology and capabilities of the PDS decision. While analyzing the circumstances under which the owners tend to choose DB or DBB, the following conclusions were reached: (1) the contractor technology and capabilities increase faster in DB than in DBB. (2) The PDS with policy and market environment preferences has an advantage in the PDS decision, and the owners are more willing to choose the PDS which was selected previously. (3) The competition mechanism in the construction market will eliminate contractors whose growth rate is too low to meet the needs of projects in the market. The research provides theoretical references for the scientific decision-making of construction enterprises.
Funding Information
  • The National Natural Science Foundation of China (71774132)
  • Shaanxi Water Conservancy Science and Technology Project (2018SLKJ-19)