Anticancer Attributes of Cantharidin: Involved Molecular Mechanisms and Pathways

Abstract
Cancer is a preeminent threat to the human race, causing millions of deaths each year on the Earth. Traditionally, natural compounds are deemed promising agents for cancer treatment. Cantharidin (CTD)—a terpenoid isolated from blister beetles—has been used extensively in traditional Chinese medicines for healing various maladies and cancer. CTD has been proven to be protein phosphatase 2A (PP2A) and heat shock transcription factor 1 (HSF-1) inhibitor, which can be potential targets for its anticancer activity. Albeit, it harbors some toxicities, its immense anticancer potential cannot be overlooked, as the cancer-specific delivery of CTD could help to rescue its lethal effects. Furthermore, several derivatives have been designed to weaken its toxicity. In light of extensive research, the antitumor activity of CTD is evident in both in vitro as well as in vivo cancer models. CTD has also proven efficacious in combination with chemotherapy and radiotherapy and it can also target some drug-resistant cancer cells. This mini-review endeavors to interpret and summarize recent information about CTD anticancer potential and underlying molecular mechanisms. The pertinent anticancer strength of CTD could be employed to develop an effective anticarcinogenic drug.
Funding Information
  • Fundamental Research Funds for the Central Universities (No. buctrc201910)
  • Beijing-Tianjin-Hebei Basic Research Cooperation Special Project (19JCZDJC65800(Z), 2010ZX09401-403)