ROCK-mediated selective activation of PERK signalling causes fibroblast reprogramming and tumour progression through a CRELD2-dependent mechanism

Abstract
It is well accepted that cancers co-opt the microenvironment for their growth. However, the molecular mechanisms that underlie cancer–microenvironment interactions are still poorly defined. Here, we show that Rho-associated kinase (ROCK) in the mammary tumour epithelium selectively actuates protein-kinase-R-like endoplasmic reticulum kinase (PERK), causing the recruitment and persistent education of tumour-promoting cancer-associated fibroblasts (CAFs), which are part of the cancer microenvironment. An analysis of tumours from patients and mice reveals that cysteine-rich with EGF-like domains 2 (CRELD2) is the paracrine factor that underlies PERK-mediated CAF education downstream of ROCK. We find that CRELD2 is regulated by PERK-regulated ATF4, and depleting CRELD2 suppressed tumour progression, demonstrating that the paracrine ROCK–PERK–ATF4–CRELD2 axis promotes the progression of breast cancer, with implications for cancer therapy.
Funding Information
  • Royal Adelaide Hospital Research Fund
  • Australian Government Research Training Program
  • Department of Health | National Health and Medical Research Council (GNT1145319, GNT1103712)
  • Department of Education and Training | Australian Research Council (FT120100132)