Regulating the regulator: nitric oxide control of post‐translational modifications

Abstract
Nitric oxide (NO) is perfectly suited for duties as a redox signalling molecule. A key route for NO bioactivity occurs via protein S‐nitrosation, the addition of a NO moiety to a protein cysteine (Cys) thiol (‐SH) to form a S‐nitrosothiol (SNO). This process is thought to underpin a myriad of cellular processes in plants linked to development, environmental responses and immune function. Here we collate emerging evidence showing that NO bioactivity regulates a growing number of diverse post‐translational modifications (PTMs) including SUMOylation, phosphorylation, persulfidation and acetylation. We provide examples of how NO orchestrates these processes to mediate plant adaptation to a variety of cellular cues.
Funding Information
  • Biotechnology and Biological Sciences Research Council (BB/DO11809/1)