AlGaN/GaN MISHEMTs with epitaxially grown GdScO3 as high- κ dielectric

Abstract
Epitaxially grown GdScO3 was integrated in a GaN-based metal-insulator-semiconductor high electron mobility transistor as a high-κ gate passivation layer. Microstructural investigations using transmission electron microscopy and x-ray diffraction confirm the epitaxial growth of GdScO3 on GaN deposited by pulsed laser deposition on the AlGaN-GaN heterostructure. The metal-insulator-semiconductor high electron mobility transistor was compared to unpassivated and to Al2O3 passivated high electron mobility transistors. A layer of 20 nm GdScO3 reduces the gate leakage current below the level of the Al2O3 passivated transistors and below the off-current of the high electron mobility transistor without any gate dielectric. Time-dependent measurements show a strong dependence of the drain leakage current in the off-state on light illumination, which indicates slow trapping effects in GdScO3 or at the GdScO3–GaN interface.
Funding Information
  • Deutsche Forschungsgemeinschaft (260161677)

This publication has 20 references indexed in Scilit: