Can intestinal absorption of dietary protein be improved through early exposure to plant-based diet?
Open Access
- 4 June 2020
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLOS ONE
- Vol. 15 (6), e0228758
- https://doi.org/10.1371/journal.pone.0228758
Abstract
Nutritional Programming (NP) has been studied as a means of mitigating the negative effects of dietary plant protein (PP), but the optimal timing and mechanism behind NP are still unknown. The objectives of this study were: 1) To determine whether zebrafish (Danio rerio) can be programmed to soybean meal (SBM) through early feeding and broodstock exposure to improve SBM utilization; 2) To determine if NP in zebrafish affects expression of genes associated with intestinal nutrient uptake; 3) To determine if early stage NP and/or broodstock affects gene expression associated with intestinal inflammation or any morphological changes in the intestinal tract that might improve dietary SBM utilization. Two broodstocks were used to form the six experimental groups. One broodstock group received fishmeal (FM) diet (FMBS), while the other was fed (“programmed with”) SBM diet (PPBS). The first ((+) Control) and the second group ((-) Control) received FM and SBM diet for the entire study, respectively, and were progeny of FMBS. The last four groups consisted of a non-programmed (FMBS-X-PP and PPBS-X-PP) and a programmed group (FMBS-NP-PP and PPBS-NP-PP) from each of the broodstocks. The programming occurred through feeding with SBM diet during 13–23 dph. The non-control groups underwent a PP-Challenge, receiving SBM diet during 36–60 dph. During the PP-Challenge, both PPBS groups experienced significantly lower weight gains than the (+) Control group. NP in early life stages significantly increased the expression of PepT1 in PPBS-NP-PP, compared to PPBS-X-PP. NP also tended to increase the expression of fabp2 in the programmed vs. non-programmed groups of both broodstocks. The highest distal villus length-to-width ratio was observed in the dual-programmed group, suggesting an increase in surface area for nutrient absorption within the intestine. The results of this study suggest that NP during early life stages may increase intestinal absorption of nutrients from PP-based feeds.Keywords
All Related Versions
This publication has 46 references indexed in Scilit:
- Soybean Meal Induces Intestinal Inflammation in Zebrafish LarvaePLOS ONE, 2013
- PepT1 mRNA expression levels in sea bream (Sparus aurata) fed different plant protein sourcesSpringerPlus, 2013
- Regulation of immunity and disease resistance by commensal microbes and chromatin modifications during zebrafish developmentProceedings of the National Academy of Sciences, 2012
- Peptide transport and animal growth: the fish paradigmBiology Letters, 2011
- Transcriptome Profiling and Functional Analyses of the Zebrafish Embryonic Innate Immune Response to Salmonella InfectionThe Journal of Immunology, 2009
- Expression profiles of matrix metalloproteinase 9 in teleost fish provide evidence for its active role in initiation and resolution of inflammationImmunology, 2008
- Family growth response to fishmeal and plant-based diets shows genotype×diet interaction in rainbow trout (Oncorhynchus mykiss)Aquaculture, 2008
- The social environment and the epigenomeEnvironmental and Molecular Mutagenesis, 2007
- Evaluation of family growth response to fishmeal and gluten-based diets in rainbow trout (Oncorhynchus mykiss)Aquaculture, 2006
- Influence of nutritional composition of diet on sea bass, Dicentrarchus labrax L., reproductive performance and egg and larval qualityAquaculture, 1994