Mapping mesoscale cortical connectivity in monkey sensorimotor cortex with optical imaging and microstimulation

Abstract
To map in vivo cortical circuitry at the mesoscale, we applied a novel approach to map interareal functional connectivity. Electrical intracortical microstimulation (ICMS) in conjunction with optical imaging of intrinsic signals (OIS) was used map functional connections in somatosensory cortical areas in anesthetized squirrel monkeys. ICMS produced activations that were focal and that displayed responses which were stimulation intensity dependent. ICMS in supragranular layers of Brodmann Areas 3b, 1, 2, 3a, and M1 evoked interareal activation patterns that were topographically appropriate and appeared consistent with known anatomical connectivity. Specifically, ICMS revealed Area 3b connections with Area 1; Area 1 connections with Areas 2 and 3a; Area 2 connections with Areas 1, 3a, and M1; Area 3a connections with Areas M1, 1, and 2; and M1 connections with Areas 3a, 1, and 2. These somatosensory connectivity patterns were reminiscent of feedforward patterns observed anatomically, although feedback contributions are also likely present. Further consistent with anatomical connectivity, intra-areal and intra-areal patterns of activation were patchy with patch sizes of 200–300 μm. In summary, ICMS with OIS is a novel approach for mapping interareal and intra-areal connections in vivo. Comparisons with feedforward and feedback anatomical connectivity are discussed.
Funding Information
  • National Institutes of Health (NS044375, NS093998, TL1TR000447)