Background luminance affects the detection of microampere currents delivered to macaque striate cortex

Abstract
Monkeys detect electrical microstimulation delivered to the striate cortex (area V1). We examined whether the ability of monkeys to detect such stimulation is affected by background luminance. While remaining fixated on a spot of light centered on a monitor, a monkey was required to detect a 100 ms train of electrical stimulation delivered to a site within area V1 situated from 1 to 1.5 mm below the cortical surface. A monkey signaled the delivery of stimulation by depressing a lever after which it was rewarded with a drop of apple juice. Control trials were interleaved during which time no stimulation was delivered and the monkey was rewarded for not depressing the lever. Biphasic pulses were delivered at 200 Hz and the current ranged from 2 to 30 microA using 0.2 ms anode-first biphasic pulses. The background luminance level of the monitor could be varied from 0.005 to 148 cd/m(2). It was found that, for monitor luminance levels below 10 cd/m(2), the current threshold to evoke a detection response increased. We discuss the significance of this result with regard to phosphenes elicited from human V1 and in relation to visual perception.