Data driven forecasting of aperiodic motions of non-autonomous systems

Abstract
In the present effort, a data-driven modeling approach is undertaken to forecast aperiodic responses of non-autonomous systems. As a representative non-autonomous system, a harmonically forced Duffing oscillator is considered. Along with it, an experimental prototype of a Duffing oscillator is studied. Data corresponding to chaotic motions are obtained through simulations of forced oscillators with hardening and softening characteristics and experiments with a bistable oscillator. Portions of these datasets are used to train a neural machine and make response predictions and forecasts for motions on the corresponding attractors. The neural machine is constructed by using a deep recurrent neural network architecture. The experiments conducted with the different numerical and experimental chaotic time-series data confirm the effectiveness of the constructed neural network for the forecasting of non-autonomous system responses.
Funding Information
  • National Science Foundation (CMMI1436141)
  • National Science Foundation (CMMI1854532)

This publication has 18 references indexed in Scilit: