Monolithic Nanoporous Gold Foams with Catalytic Activity for Chemical Vapor Deposition Growth of Carbon Nanostructures

Abstract
While bulk gold is generally considered to be a catalytically inactive material, nanostructured forms of gold can in fact be highly catalytically active. However, few methods exist for preparing high-purity macroscopic forms of catalytically active gold. In this work, we describe the synthesis of catalytically active macroscopic nanoporous gold foams via combustion synthesis of gold bis(tetrazolato)amine complexes. The resulting metallically pure porous gold nanoarchitectures exhibit bulk densities of 3 and Brunauer–Emmett–Teller (BET) surface areas as high as 10.9 m2/g, making them among the lowest-density and highest-surface-area monolithic forms of gold produced to date. Thanks to the presence of a highly nanostructured gold surface, such gold nanofoams have also been found to be highly catalytically active toward thermal chemical vapor deposition (CVD) growth of carbon nanotubes, providing a novel method for direct synthesis of carbon nanostructures on macroscopic gold substrates. In contrast, analogous copper nanofoams were found to be catalytically inactive toward the growth of graphitic nanostructures under the same synthesis conditions, highlighting the unusually high catalytic propensity of this form factor of gold. The combustion synthesis process described herein represents a never-wet approach for directly synthesizing macroscopic catalytically active gold. Unlike sol–gel and dealloying approaches, combustion synthesis eliminates the time-consuming diffusion-mediated steps associated with previous methods and offers multiple degrees of freedom for tuning morphology, electrical conductivity, and mechanical properties.
Funding Information
  • Center for Integrated Nanotechnologies
  • Los Alamos National Laboratory (89233218CNA000001)