Performance of Dual-Band Short-Wave Infrared InGaAs Focal-Plane Arrays with Interference Narrow-Band Filter

Abstract
In this work, we fabricated dual-band 800 × 2 short-wave infrared (SWIR) indium gallium arsenide (InGaAs) focal-plane arrays (FPAs) using N-InP/i-In0.53Ga0.47As/N-InP double-heterostructure materials, which are often applied in ocean-color remote sensing. Using narrow-band interference-filter integration, our detector-adopted planner structure produced two detection channels with center wavelengths of 1.24 and 1.64 μm, and a full-width half-maximum (FWHM) of 0.02 μm for both channels. The photoelectric characteristics of the spectral response, modulation transfer function (MTF), and detectability of the detector were further analyzed. Our FPAs showed good MTF uniformity with pixel operability as high as 100% for each 800 × 1 linear array. Peak detectivity reached 4.39 × 1012 and 5.82 × 1012 cm·Hz1/2/W at 278 K, respectively, and response nonuniformity was ideal at 2.48% and 2.61%, respectively. As a final step, dual-band infrared detection imaging was successfully carried out in push-broom mode.
Funding Information
  • National Natural Science Foundation of China (61505090, 61874168, 61704093)
  • Jiangsu Provincial Department of Education (17KJA470007)