Ultrastructure of Insect and Spider Cocoon Silks

Abstract
Despite much interest in the extraordinary mechanical properties of silks, the structure of native silk fibers is still not fully understood. In the present study, the morphology, topography, and organization of insect and spider cocoon silks were investigated using a range of imaging methods. Field emission scanning electron microscopy was used to observe transverse and longitude structures in silk fibers subjected to tensile fracturing, freeze fracturing, or polishing. In addition, ultrathin sections of silk brins embedded in resin were examined using transmission electron microscopy. Finally, dry silk brins were examined by confocal microscopy. The results confirmed the existence of well-oriented bundles of nanofibrils in all the silks examined and gave an indication of a hierarchical construction of the brin. Observed separation of the microfibrils in fractured brins suggests that the multifibrillar structure of the silk fiber contributes to toughness by allowing dissipation of energy in the controlled propagation of cracks.