Detection of sodium channel distribution in rat sciatic nerve following lysophosphatidylcholine-induced demyelination

Abstract
Summary In vivo application of lysophosphatidylcholine (LPC) to rat sciatic nerve induces impaired hind leg movement within 2 days which is recovered by 6 days. Segmental demyelination was seen at 2 days after LPC application, and remyelination had barely started in a few axons by 6 days. Using sodium channel-specific monoclonal antibodies and immunofluorescence microscopy, we observed altered distribution of sodium channels in demyelinated axons. Bright fluorescent labeling was found along the segmentally demyelinated axolemma at 6 days in contrast to the dim staining of the demyelinated nerve found at 2 days. In addition, radioimmunoassays detected an elevated number of antibody binding sites on sciatic nerve trunk from the sixth day. Our data provide the immunocytochemical evidence for the assumption that recruitment of sodium channels into demyelinated axolemma contributes to the recovery of function following axon demyelination by LPC.