Complement‐dependent induction of DNA synthesis and proliferation of human diploid fibroblasts

Abstract
The effects of fresh human serum (FHS) and heat-inactivated human serum (HHS) on the DNA synthesis and proliferation of human diploid fibroblasts were assessed. FHS activated significantly more quiescent fibroblasts to undergo DNA synthesis and proliferation than did HHS. The stimulatory effect occurred consistently over a serum concentration range of 0.1–10%. Using bromodeoxyuridine selective killing techniques, it was shown that this FHS stimulatory effect was on a specific subpopulation of fibroblasts unresponsive to HHS. The involvement of the complement system, and specifically of C1, was shown by the inability of Clq-depleted FHS to support enhanced DNA synthesis whereas Clq-depleted serum reconstituted with purified Clq was effective. Purified Clq did not restore activity when added to heated serum, nor was it mitogenic when tested in basal medium without serum. The addition of purified Clq to fresh serum inhibited the enhancement of DNA synthesis, and at Clq concentrations of 4γ/ml and greater, the fresh serum effects were abrogated. Thus, it appears that binding of the assembled C1 complex to the fibroblast surface was required for FHS-mediated enhancement of fibroblast proliferation, with Clq subcomponent serving as the recognition site. The results from several experiments indicated that antibody was not required for the complement-dependent fibroblast activation. FHS was not cytotoxic, and autologous serum was as effective as allogeneic sera. A 20-fold molar excess of Fab' from pooled human IgG did not alter the FHS effects. FHS from which IgG was more than 99% depleted was still effective. These results suggested an antibody-independent role for complement in the activation of a subpopulation of human diploid fibroblasts.