Phosphatidylinositol 3-Kinase and Calcium-Activated Transcription Pathways Are Required for VLDL-Induced Smooth Muscle Cell Proliferation

Abstract
Little is known regarding the molecular mechanisms of atherogenicity of triglyceride-rich lipoproteins such as very low-density lipoproteins (VLDLs). We examined the effect of VLDL on proliferation of rat aortic smooth muscle cells, intracellular Ca2+ handling, and activity of cAMP-responsive element binding protein (CREB) and nuclear factor of activated T cells (NFAT) transcription factors. VLDL, isolated from human serum, dose- and time-dependently promoted proliferation. After 4 hours of exposure to VLDL (0.15 g/L proteins), the caffeine-induced Ca2+ release was inhibited and the IP3-sensitive Ca2+ release induced by ATP (10 μmol/L) was markedly prolonged. In quiescent cells, CREB was phosphorylated (pCREB) and NFAT was present in the cytosol, whereas in cells exposed to VLDL for 4 to 24 hours, pCREB disappeared and NFAT was translocated to the nucleus. VLDL-induced NFAT translocation and proliferation were blocked by cyclosporin A and LY294002 involving calcineurin and phosphatidylinositol 3-kinase (PI3K) pathways. Indeed, VLDLs rapidly phosphorylate protein kinase B and glycogen synthase kinase-3β in a PI3K-dependent way. These results provide the first evidence that VLDLs induce smooth muscle cell proliferation by activating the PI3K pathway and nuclear NFAT translocation. Blockade of the Ca2+-induced Ca2+ release mechanism and dephosphorylation of pCREB contribute but were not sufficient to induce a proliferating phenotype.