Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2

Abstract
Electrical and optical properties of CuAlO2, a p-type conducting transparent oxide, were examined for the thin films prepared by the pulsed laser deposition technique. The indirect and direct allowed optical band gaps were evaluated to be ∼1.8 and ∼3.5 eV, respectively. The conductivity at 300 K was ∼3×10−1S cm−1 and its temperature dependence is of the thermal-activation type (activation energy ≈0.2 eV) at temperatures >220 K but is of the variable-range hopping type (log σ∝T−1/4) at <220 K. It was inferred that an admixed state of Cu 3d and O 2p primarily constitutes the upper valence band, which controls transport of positive holes, from a combined information on ultraviolet photoemission spectrum with x-ray photoemission spectrum. An energy band calculation by full-potential linearized augmented plane wave method substantiated the experimental findings. The present results gave a solid basis for our working hypothesis [Nature (London) 389, 939 (1997)] for chemical design of p-type conducting transparent oxides.