Gas and vapour detection with poly(pyrrole) gas sensors

Abstract
The response mechanism of the conducting polymer poly(pyrrole) to a selection of gases and vapours was investigated using two techniques: measurement of resistance change and mass changes using a piezoelectric quartz crystal microbalance with the objective of characterizing responses for incorporation in sensor arrays. Bromide-doped films were exposed to methanol, hexane, 2-2-dimethylbutane, ammonia and hydrogen sulfide. Polymers of different thicknesses were also exposed to methanol vapour and the response profiles were studied. The responses were all of a Fickian type except the piezoelectric signal, which exhibited an anomalous non-Fickian response to methanol. This suggests that the poly(pyrrole) resistance changes frequently observed are partly due to one stage in the two-stage sorption perhaps involving the swelling of the polymer. It was concluded that the response mechanism of poly(pyrrole) sensing of different gases and vapours is due to a mixed response involving electronic effects and physical effects.