Asymmetric Hydrosilylation of Styrenes Catalyzed by Palladium−MOP Complexes: Ligand Modification and Mechanistic Studies

Abstract
In the palladium-catalyzed asymmetric hydrosilylation of styrene (3a) with trichlorosilane, several chiral monophosphine ligands, (R)-2-diarylphosphino-1,1‘-binaphthyls (2a−g), were examined for their enantioselectivity. The highest enantioselectivity was observed in the reaction with (R)-2-bis[3,5-bis(trifluoromethyl)phenyl]phosphino-1,1‘-binaphthyl (2g), which gave (S)-1-phenylethanol (5a) of 98% ee after oxidation of the hydrosilylation product, 1-phenyl-1-(trichlorosilyl)ethane (4a). The palladium complex of 2g also efficiently catalyzed the asymmetric hydrosilylation of substituted styrenes on the phenyl ring or at the β position to give the corresponding chiral benzylic alcohols of over 96% ee. Deuterium-labeling studies on the hydrosilylation of regiospecifically deuterated styrene revealed that β-hydrogen elimination from 1-phenylethyl(silyl)palladium intermediate is very fast compared with reductive elimination giving hydrosilylation product when ligand 2g is used. The reaction of o-allylstyrene (9) with trichlorosilane catalyzed by (R)-2g/Pd gave (1S,2R)-1-methyl-2-(trichlorosilylmethyl)indan (10) (91% ee) and (S)-1-(2-(propenyl)phenyl)-1-trichlorosilylethanes (11a and 11b) (95% ee). On the basis of their opposite configurations at the benzylic position, a rationale for the high enantioselectivity of ligand 2g is proposed.

This publication has 41 references indexed in Scilit: