MERIS potential for ocean colour studies in the open ocean

Abstract
The interest of space observations of ocean colour for determining variations in phytoplankton distribution and for deriving primary production (via models) has been largely demonstrated by the Coastal Zone Color Scanner (CZCS) which operated from 1978 to 1986. The capabilities of this pioneer sensor, however, were limited both in spectral resolution and radiometric accuracy. The next generation of ocean colour sensors will benefit from major improvements. The Medium Resolution Imaging Spectrometer (MERIS), planned by the European Space Agency (ESA) for the Envisat platform, has been designed to measure radiances in 15 visible and infrared channels. Three infrared channels will allow aerosol characterization, and therefore accurate atmospheric corrections, to be performed for each pixel. For the retrieval of marine parameters, nine channels between 410 and 705nm will be available (as opposed to only four with the CZCS). In coastal waters this should, in principle, allow a separate quantification of different substances (phytoplankton, mineral particles, yellow substance) to be performed. In open ocean waters optically dominated by phytoplankton and their associate detrital matter, the basic information (i.e. the concentration of phytoplanktonic pigments) will be retrieved with improved accuracy due to the increased radiometric performances of MERIS. The adoption of multi-wavelength algorithms could also lead to additional information concerning auxiliary pigments and taxonomic groups. Finally, MERIS will be one of the first sensors to allow measurements of Sun-induced chlorophyll a in vivo fluorescence, which could provide a complementary approach for the assessment of phytoplankton abundance. The development of these next-generation algorithms, however, requires a number of fundamental studies.