Modeling Benzene Pharmacokinetics Across Three Sets of Animal Data: Parametric Sensitivity and Risk Implications

Abstract
Typically, the uncertainty affecting the parameters of physiologically based pharmacokinetic (PBPK) models is ignored because it is not currently practical to adjust their values using classical parameter estimation techniques. This issue of parametric variability in a physiological model of benzene pharmacokinetics is addressed in this paper. Monte Carlo simulations were used to study the effects on the model output arising from variability in its parameters. The output was classified into two categories, depending on whether the output of the model on a particular run was judged to be generally consistent with published experimental data. Statistical techniques were used to examine sensitivity and interaction in the parameter space. The model was evaluated against the data from three different experiments in order to test for the structural adequacy of the model and the consistency of the experimental results. The regions of the parameter space associated with various inhalation and gavage experiments are distinct, and the model as presently structured cannot adequately represent the outcomes of all experiments. Our results suggest that further effort is required to discern between the structural adequacy of the model and the consistency of the experimental results. The impact of our results on the risk assessment process for benzene is also examined.