Expansion of surface epithelium provides the major extrinsic force for bending of the neural plate

Abstract
Neurulation, formation of the neural tube, requires both intrinsic forces (i.e., those generated within the neural plate) and extrinsic forces (i.e., those generated outside the neural plate in adjacent tissues), but the precise origin of these forces is unclear. In this study, we addressed the question of which tissue produces the major extrinsic force driving bending of the neural plate. We have previously shown that 1) extrinsic forces are required for bending and 2) such forces are generated lateral to the neural plate. Three tissues flank the neural plate prior to its bending: surface epithelium, mesoderm, and endoderm. In the present study, we removed two of these layers, namely, the endoderm and mesoderm, underlying and lateral to the neural plate; bending still occurred, often with complete formation of a neural tube, although the latter usually rotated toward the side of tissue depletion. These results suggest that the surface epithelium, the only tissue remaining after microsurgery, provides the major extrinsic force for bending of the neural plate and that the mesoderm (and perhaps endoderm) stablizes the neuraxis, maintaining its proper orientation and position on the midline.