Refraction by a spherical nematic bubble

Abstract
A formalism is developed to study refraction by a spherical nematic bubble. It is applicable to bubbles that are larger than light wavelengths, but smaller than the dimensions for excitation of director-fluctuation-induced scattering. The technique yields a nonlinear differential equation and an associated integral which govern the trajectory of a ray inside a nematic region for an arbitrary director configuration. Explicit solutions are provided for five simple interior arrangementsisotropic, onion skin, radial star, horizontal (bottle brush), and vertical. It is then demonstrated that for extraordinary-ordinary refractive-index difference small compared to either, interfacial refraction at the bubble surface is the dominant contribution; deviations from a rectilinear path are small. When ranked in terms of decreasing scattering effectiveness, the sequence is horizontal, onion, isotropic, radial, and vertical if the light is linearly polarized and coupling optimally to the extraordinary index component; for unpolarized incoherent light the order becomes isotropic, horizontal, onion, radial, and vertical.