Trichoderma harzianum Metabolites Pre-Adapt Mushrooms to Trichoderma aggressivum antagonism

Abstract
Trichoderma spp. is the cause of green mold, a disorder that affects cultivated mushrooms. The aims of the study were to establish whether improvement of mushroom resistance to Trichoderma aggressivum could be obtained by inducing reaction mechanisms before contact with the pathogen and whether this ability was species or strain dependent. Twenty nine isolates of Agaricus bisporus, 29 isolates of Lentinula edodes and 18 isolates of Pleurotus spp. were studied. The effect of T. harzianum metabolites on mycelial growth of these isolates was evaluated on YMEA (yeast, malt extract and agar), supplemented or not with Lysing Enzymes from T. harzianum (Sigma®, L1412). Mycelial growth generally was affected by Lysing Enzymes, but some L. edodes and Pleurotus spp. adapted to Lysing Enzymes. When mycelium was taken from a first culture with Lysing Enzymes and placed on YMEA with Lysing Enzymes for a second culture, their growth rate was not different from those of the controls. In the case of A. bisporus, only partial adaptation was obtained with a few isolates. The effect of adaptation to Lysing Enzymes on resistance to T. aggressivum was assayed for one strain of each group. Trichoderma aggressivum was exposed to the margin of 5- to 9-day-old mushroom colonies. Agaricus bisporus produced brown droplets, and T. aggressivum overgrew its mycelium. Lentinula edodes and P. ostreatus produced brown lines blocking the progression of T. harzianum, both on YMEA and YMEA plus Lysing Enzymes. The line was visible after 3 d on YMEA and after only 2 d on YMEA plus Lysing Enzymes. Improvement in the resistance to antagonists by introduction of some of their metabolites to the culture medium is a method for mushroom protection.