Magnetic Ordering of Dangling Bond Networks on Hydrogen-Deposited Si(111) Surfaces

Abstract
Based on total-energy electronic-structure calculations within the density-functional theory, we find that a high spin state is realized for an ultimate dangling bond unit on an otherwise hydrogen-covered Si(111) surface. We further propose a systematic method of constructing nanometer-scale dangling bond networks that exhibit the ferrimagnetic spin ordering. The interplay between the electron-electron interaction and the surface reconstruction is elucidated.