Photosynthetic responses to variable light: a comparison of species from contrasting habitats

Abstract
Photosynthetic responses to variable light were compared for species from habitats differing in light availability and dynamics. Plants were grown under the same controlled conditions and were analysed for the kinetics of photosynthetic induction when photon flux density (PFD) was increased from 25 to 800 μmol m-2s-1. Gas exchange techniques were used to analyse the two principal components of induction, opening of stomata and activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). On average, 90% of the final photosynthetic rate was attained after 7 min for obligate shade plants (two species), 18 min for fast-growing sun plants (seven species from productive habitats) and 32 min for slow-growing sun plants (nine species from unproductive habitats). The rapidity of response of the shade plants was explained by stomata remaining more open in the low-light period prior to induction. This was also observed in two species of deciduous trees, which therefore resembled shade plants rather than other fast-growing sun plants. The slow response of the slow-growing sun plants was the result of lower rates of both Rubisco activation and stomatal opening, the latter being more important for the final phase of induction. The lower rate of Rubisco activation was confirmed by direct, enzymatic measurements of representative plants. With increasing leaf age, the rate of stomatal opening appeared to decrease but the rate of Rubisco activation was largely conserved. Representative species were also compared with respect to the efficiency of using light-flecks relative to continuously high light. The shade plants and the slow-growing sun plants had a higher efficiency than the fast-growing sun plants. This could be related to the presence of a higher electron transport capacity relative to carboxylation capacity in the former group, which seems to be associated with their lower photosynthetic capacities. Representative species were also compared with respect to the ability to maintain the various induction components through periods of low light. Generally, the fast-growing sun plants were less able than the other two categories to maintain the rapidly reversible component. Thus, although the rate of induction appears to be related to the ecology of the plant, other aspects of photosynthetic dynamics, such as the efficiency of using lightflecks and the ability to maintain the rapidly reversible component, seem rather to be inversely related to the photosynthetic capacity.