Single-Walled Carbon Nanotubes in the Intact Organism: Near-IR Imaging and Biocompatibility Studies in Drosophila

Abstract
The ability of near-infrared fluorescence imaging to detect single-walled carbon nanotubes (SWNTs) in organisms and biological tissues has been explored using Drosophila melanogaster (fruit flies). Drosophila larvae were raised on food containing ∼10 ppm of disaggregated SWNTs. Their viability and growth were not reduced by nanotube ingestion. Near-IR nanotube fluorescence was imaged from intact living larvae, and individual nanotubes in dissected tissue specimens were imaged, structurally identified, and counted to estimate a biodistribution.