Modification of an Adenoviral Vector with Biologically Selected Peptides: A Novel Strategy for Gene Delivery to Cells of Choice

Abstract
Recombinant adenoviruses are currently being used as vectors for gene delivery to a wide variety of cells and tissues. Although generally efficacious for gene transfer in vitro, improvement in the efficiency of vector delivery in vivo may aid several gene therapy applications. One major obstacle is the lack of high-affinity viral receptors on the surface of certain cells that are targets for gene therapy. In principle, incorporation of avid, cell-specific ligands into the virion could markedly improve vector entry into the desired tissues. We have developed a strategy for addressing this issue in the lung by biopanning differentiated, ciliated airway epithelial cells against a phage display library. The peptide with the most effective binding was coupled to the surface of an adenovirus using bifunctional polyethylene glycol (PEG) molecules. The chemically modified adenoviral vector was able to effect gene transfer to well-differentiated human airway epithelial cells by an alternative pathway dependent on the incorporated peptide. Coupling of PEG to the surface of the virus also served to partially protect the virus from neutralizing antibodies in vitro. These experiments will aid in the design of improved adenoviral vectors with the capacity for more specific and efficient delivery of therapeutic genes to desired target tissues.