Comparison of the Effect of Mutant and Wild-Type p53 on Global Gene Expression

Abstract
The mechanisms for “gain-of-function” phenotypes produced by mutant p53s such as enhanced proliferation, resistance to transforming growth factor-β–mediated growth suppression, and increased tumorigenesis are not known. One theory is that these phenotypes are caused by novel transcriptional regulatory events acquired by mutant p53s. Another explanation is that these effects are a result of an imbalance of functions caused by the retention of some of the wild-type transcriptional regulatory events in the context of a loss of other counterbalancing activities. An analysis of the ability of DNA-binding domain mutants A138P and R175H, and wild-type p53 to regulate the expression levels of 6.9 × 103 genes revealed that the mutants retained only <5% of the regulatory activities of the wild-type protein. A138P p53 exhibited mostly retained wild-type regulatory activities and few acquired novel events. However, R175H p53 possessed an approximately equal number of wild-type regulatory events and novel activities. This is the first report that, after examination of the regulation of a large unfocused set of genes, provides data indicating that remaining wild-type transcriptional regulatory functions existing in the absence of counterbalancing activities as well as acquired novel events both contribute to the gain-of-function phenotypes produced by mutant p53s. However, mutant p53s are likely to be distinct in terms of the extent to which each mechanism contributes to their gain-of-function phenotypes.