Translation of trpG in Bacillus subtilis is regulated by the trp RNA-binding attenuation protein (TRAP)

Abstract
TrpG of Bacillus subtilis encodes a glutamine amidotransferase subunit that is involved in the synthesis of both folic acid and L-tryptophan. Expression of trpG is negatively regulated by tryptophan even though this gene is located within a folic acid biosynthetic operon. Examination of both transcriptional and translational gene fusions to lacZ involving trpG and direct measurements of trpG mRNA levels and TrpG polypeptide accumulation demonstrated that translation of trpG is regulated by tryptophan whereas transcription is not. these studies also show that this regulation is mediated by the trp RNA-binding attenuation protein. Deletion and point mutations indicated that regulation is dependent on a series of G/UAG trinucleotide repeats surrounding the putative ribosome-binding site for trpG. Our results are consistent with a model in which the tryptophan-activated trp RNA-binding attenuation protein and ribosomes compete for binding to trpG mRNA.