Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean

Abstract
The effects of Al, Cd and pH on growth, photosynthesis, malondialdehyde (MDA) content, and some antioxidant enzyme activities of the two soybean cultivars with different Al tolerance were determined using a hydroponic culture. There were six treatments as follows: pH 6.5; pH 4.0; pH 6.5 + 1.0 µM Cd; pH 4.0 + 1.0 µM Cd; pH 4.0 + 150 µM Al; pH 4.0 + 1.0 µM Cd + 150 µM Al. The results showed that the low pH (4.0) and Al treatments caused marked reduction in the growth (root and shoot length and dry mass), chlorophyll content (SPAD value) and net photosynthetic rate. Higher malondialdehyde content, superoxide dismutase (SOD) and peroxidase (POD) activities were detected in the plants exposed to both Al and Cd than in those exposed to Al treatment alone. An expressive enhancement of SOD and POD was observed in the plants exposed to 150 µM Al in the comparison with the control plants, especially in Al-sensitive cv. Zhechun 2 which had also significantly higher Al and Cd content than Al tolerant cv. Liao-1. Cd addition increased Al content in the plants exposed to Al + Cd stress, and cv. Zhechun 2 had relatively lower Al content. The present research indicated that Al and Cd are synergistic in their effects on plant growth and some physiological traits.