Diameter dependence of electron mobility in InGaAs nanowires

Abstract
In this work, we present the diameter dependent electron mobility study of InGaAs nanowires (NWs) grown by gold-catalyzed vapor transport method. These single crystalline nanowires have an In-rich stoichiometry (i.e., In0.7Ga0.3As) with dispersed diameters from 15 to 55 nm. The current-voltage behaviors of fabricated nanowire field-effect transistors reveal that the aggressive scaling of nanowire diameter will induce a degradation of electron mobility, while low-temperature measurements further decouple the effects of surface/interface traps and phonon scattering, highlighting the impact of surface roughness scattering on the electron mobility. This work suggests a careful design consideration of nanowire dimension is required for achieving the optimal device performances.
Funding Information
  • National Natural Science Foundation of China (51202205)