An efficient implementation of Boolean functions as self-timed circuits

Abstract
The authors propose a general synthesis method for efficiently implementing any family of Boolean functions over a set of variables, as a self-timed logic module. Interval temporal logic is used to express the constraints that are formulated for the self-timed logic module. A method is provided for proving the correct behavior of the designed circuit, by showing that it obeys all the functional constraints. The resulting circuit is compared with alternative proposed self-timed methodologies. This approach is shown to require less gates than other methods. The proposed method is appropriate for automatic synthesis of self-timed systems. A formal proof of correctness is provided.

This publication has 9 references indexed in Scilit: