Structural changes in glycogen phosphorylase induced by phosphorylation

Abstract
A comparison of the refined crystal structures of dimeric glycogen phosphorylase b and a reveals structural changes that represent the first step in the activation of the enzyme. On phosphorylation of serine-14, the N-terminus of each subunit assumes an ordered helical conformation and binds to the surface of the dimer. The consequent structural changes at the N- and C-terminal regions lead to strengthened interactions between subunits and alter the binding sites for allosteric effectors and substrates