Introduction of Purified Genes Into Mammalian Cell

Abstract
There are a number of methods to introduce genes into mammalian cells. These include cell hybridization, chromosome-mediated and DNA-mediated gene transfer. DNA-mediated transfer can be achieved by direct microinjection methods or by indirect methods. The DNA enters the nucleus and is expressed in a high proportion of cells transiently. The DNA then becomes integrated into host cell DNA at random sites resulting in more stably expressing transformants. A number of genes for which selection systems exist can be introduced into mammalian cells. Nonselectable genes can also be introduced into cells by either ligating them to a selectable gene or by mixing them with carrier DNA and a selectable gene. If an amplifiable gene sequence is introduced into cells, it and other genes in its proximity can be coamplified. Amplification of the genes can also be achieved by the use of appropriate viral vectors and recipient cells. The foreign genes are expressed in the recipient cells if they contain the appropriate recognition signals for initiation and termination of transcription. Transfection systems are thus permitting identification of DNA sequences which have a regulatory role in gene expression. The identification of transcriptional signal sequences has formed the basis for construction of appropriate molecules which would permit expression of genes which cannot normally be expressed in mammalian cells (e.g., bacterial genes). The foreign genes are not only expressed in the recipient cells but they can also be subject to regulation in the appropriate environment. This observation is paving the way for identification of regulatory sequences. The foreign DNA sequences integrated into the host genome can be recovered by a variety of methods. Such methods permit isolation of genes which code for a selectable gene product.