A Finite Element Model of Skin Subjected to a Flash Fire

Abstract
A variable property, multiple layer finite element model was developed to predict skin temperatures and times to second and third degree burns under simulated flash fire conditions. A sensitivity study of burn predictions to variations in thermal physical properties of skin was undertaken using this model. It was found that variations in these properties over the ranges used in multiple layer skin models had minimal effects on second degree burn predictions, but large effects on third degree burn predictions. It was also found that the blood perfusion source term in Pennes’ bioheat transfer equation could be neglected in predicting second and third degree burns due to flash fires. The predictions from this model were also compared with those from the closed form solution of this equation, which has been used in the literature for making burn predictions from accidents similar to flash fires.