Enzymes in atlatoxin B1 biosynthesis: Strategies for identifying pertinent genes

Abstract
Recent work on the aflatoxin biosynthetic pathway is reviewed, with special emphasis on the enzymes of the late stages of the pathway involving conversion of sterigmatocystin (ST) to aflatoxin B1 (AFB1) through an O-methylsterigmatocystin intermediate. Two enzyme activities were discovered in subcellular fractions of cell-free extracts of a mutant strain ofAspergillus parasiticus (SRRC 163): 1)A post-microsomal methyltransferase (MT) catalyzed conversion of ST to OMST, and 2) a microsomal-associated activity (oxido-reductase) converted OMST to AFB1. The 168 KDa, anionic MT was purified to homogeneity and characterized (two subunits, 110 KDa and 58 KDa). Preliminary evidence indicated the presence of a cationic isozyme of the MT in mycelial extracts. The oxido-reductase has been partially purified and characterized. Polyclonal antibodies were prepared to the anionic MT and the enzyme's amino acid composition determined. A cDNA library has been constructed from mRNA isolated fromAspergillus parasiticus mycelia during the onset of AFB1 biosynthesis for the purpose of identifying the genes responsible for aflatoxin biosynthesis.

This publication has 54 references indexed in Scilit: