Effects of Crystalloid on Lung Fluid Balance After Smoke Inhalation

Abstract
Inhalation injury occurs in 21% of flame burn victims who require large fluid volumes for resuscitation and have a mortality rate greater than 30%. This study was done to determine how vulnerable the smoke-injured lung is to fluid accumulation when crystalloids are infused rapidly. Mongrel dogs were exposed to smoke and 10% body-weight Ringer''s lactate in three groups; (I) fluid only, smoke only and (III) smoke and fluid. The increase in wet-dry lung weight ratio was 2% in Group I, 28% in Group II, and 42% in Group III, consistent with pulmonary edema present only in Group III. The decrease in colloid oncotic pressure was similar in both of the groups that were given fluid, and the rise in the surface tension minimum of lung extracts was similar in both of the groups that were exposed to smoke. The smoke-injured lung loses the ability to protect itself when challenged with fluid. Reduced oncotic pressure is not responsible. Changes in microvascular pressure, endothelial and epitheial damage and surfactant inactivation interact to cause this increase in extravascular lung water.