Abstract
The works performed in the Separation Chemistry Group of the Chemistry Division of Argonne National Laboratory on the transport and separation properties of supported liquid membranes (SLM) are reviewed. The models and equations which describe the permeation through SLMs of metal species are described. These models have been tested with various carriers absorbed on flat-sheet and hollow-fiber SLMs by measuring the permeation of several metal species of hydrometallurgical and nuclear interest. An equation for the separation factor of metal species in SLM processes and examples of separations of metal ions are reported. The possibility of bypassing the single stage character of SLM separations by using multilayer composite SLMs, arranged in series, is also analyzed. Finally, the factors which control the stability of SLMs are briefly discussed.