Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity

Abstract
A near-infrared plasmonic refractive index (RI) sensor with figure of merit (FOM) as high as 124.6 is proposed and investigated numerically. The RI sensing is realized by employing the linear relation between resonant wavelength and RI of the material under detecting. Based on the fillet cavity coupled with two metal-insulator-metal waveguides, transmission efficiency (T) and optical resolution (FWHM) of the RI sensor are both improved to a great extent with T = 95% and FWHM = 12nm, keeping acceptable wavelength sensitivity of 1496nm/RIU within the near-infrared region. In addition, a sensitivity as high as 3476nm/RIU is obtained by optimizing the shape and size of fillet cavity. In general, the high FOM, transmittance and sensitivity achieved by our design may get further applications in biomedical science and nanophotonic circuits.
Funding Information
  • Beijing Excellent Ph.D. Thesis Guidance Foundation (NO.20131001301)
  • National Natural Science Foundation of China (NSFC) (NO.61275201, NO.61372037)