Abstract
This paper discusses the dynamics computation of structure-varying kinematic chains which imply mechanical link systems whose structure may change from open kinematic chain to closed one and vice versa. The proposed algorithm can handle and compute the dynamics and motions of any rigid link systems in a seamless manner without switching among algorithms. The computation is developed on the foundation of the dynamics computation algorithms established in robotics, which is superior in efficiency due to explicit use of the generalized coordinates to those used in the general-purpose motion analysis softwares. Although the structure-varying kinematic chains are commonly found in computing human and animal motions, the computation of their dynamics has not been discussed in literature. The developed computation will provide a general algorithm for the computation of motion and control of humanoid robots and computer graphics human figures.

This publication has 8 references indexed in Scilit: