Opportunistic Multiple Access for Cognitive Radio Networks

Abstract
In this paper, opportunistic multiple access to the under-utilized channel resources is investigated. Exploiting source burstiness, secondary cognitive nodes utilizes primary nodes' periods of silence to access the channel and transmit their packets. Cognitive relays could also make use of these silence periods to offer spatial diversity without incurring bandwidth efficiency losses. First, we consider the cognitive cooperation protocol and propose two different relay assignment schemes. Comparison between the proposed schemes is carried out through a maximum stable throughput analysis of the network. Then, secondary nodes access to the remaining idle channel resources is investigated. Queueing theoretical analysis and numerical results reveal that despite the fact that relays occupy part of the idle resources to provide cooperation, secondary nodes surprisingly achieve higher throughput in the presence of relays. The rationale is that relays help primary nodes empty their queues at faster rates, therefore, secondary nodes observe increased access opportunities to the channel.

This publication has 15 references indexed in Scilit: