Surface-roughness contributions to the electrical resistivity of polycrystalline metal films

Abstract
The influence of surface roughness on the electrical conductivity of polycrystalline metal films has to be considered at two different length scales. The large-scale surface roughness due to the granular arrangement of these films gives rise to a fluctuating film cross section. One-dimensional models of these fluctuations lead to roughness values consistent with scanning-tunneling-microscopy images of film surfaces. The microscopic surface roughness, mainly given by atomic steps on the crystallite surfaces, represents centers for surface scattering of conduction electrons. With this concept we were able to describe not only the thickness-dependent conductivity of films with natural (as-deposited) surface roughness, but also the increase in the resistance during subsequent coating with adatoms at 80 K owing to an artificial microscopic roughening of their surfaces.