Abstract
Agglutination and immunofluorescence tests in vitro showed that the ATS used in these experiments cross-reacted with macrophages and RBC. However, ATS was not toxic in vivo, and small doses given subcutaneously depleted thymus-dependent areas of lymphoid tissues and selectively depressed blood lymphocyte counts without affecting other cell types in the blood. Furthermore, the function of littoral macrophages as indicated by the clearance of blood-borne virus and its subsequent behavior over a 48 hr period in the liver and spleen was not changed by ATS. Thus, the innate resistance of these vital target organs was not depressed. A similar regimen of subcutaneous ATS caused a highly significant increase in mortality from mousepox with an associated failure to control virus growth in the liver and spleen which was manifest by 6 days after infection. The interferon and neutralizing antibody responses were not impaired in ATS-treated mice, but the cell-mediated immune response was significantly suppressed. This evidence, and consideration of the timing of these host responses during the course of infection in relation to the control of virus growth in the liver and spleen, led to the conclusion that cell-mediated immunity probably contributed an essential acquired recovery mechanism. However, no evidence was obtained concerning the nature of this antiviral mechanism.